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Abstract ~ 

Computational fluid dynamics (CFD) approaches were used to 
compute the supersonic and hypersonic flow fields and aerodynamic 
forces and moments on elliptical projectiles. Steady state numerical 
results have been obtained at several supersonic Mach numbers 
between 2.5 and 4.0 and several angles of attack from 0 to 12 degrees 
for the “jet-off” conditions with the use of Euler and Navier-Stokes 
flow solvers. In addition, numerical computations have been 
performed for the “jet-on” conditions to study the. interaction of a 
h&m-t jet with a free stream Mach 4.0 flow. In general, very good 
agreement of the computed aerodynamic coefficients with the 
etperimental data was achieved at all speeds and angles of attack 
investigated for jet-off conditions. A small discrepancy exists in the 
comparisons for the axial force. CFD results for the jet-on case show 
the qualitative features and strong flow interaction between the jet 
and the free stream flow. The results show the predictive capabilities 
of CFD techniques for supersonic flow over elliptical projectiles. 
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NUMERICAL COMPUTATIONS OF SUPERSONIC FLOW 
OVER ELLIPTICAL PROJECTILES 

1. Introduction 

The advancement of computational fluid dynamics (CFD) has had a major 
impact on projectile design and development [1,2,3,4]. Itnproved computer 
technology and state-of-the-art numerical procedures enable solutions to 
complex, three-dimensional (3-D) problems associated with projectile and missile 
aerodynamics. In general, these techniques produce accurate and reliable 
numerical results for projectiles and missiles at small angles of attack. Modern 
projectiles and missiles are expected to experience moderate to large angles of 
attack during flight. Of particular interest is the accurate determination of 
supersonic and hypersonic flow over elliptical projectiles at moderate angles of 
attack. The flow field for such projectiles with non-axisymmetric cross sections is 
complex, especially in the presence of jets used to maneuver these projectiles. 
The work presented in this report was initiated as part of The Technical 
Cooperation Program (TTCP) effort with participants from Canada, the United 
Kingdom, and the United States and was aimed at assessing the capabilities of 
the both Euler and Navier-Stokes solvers currently available to research scientists 
for supersonic and hypersonic flow over elliptical projectiles for both “jet-off” 
and “jet-on” conditions [5]. The TTCP research effort has also focused on the 
wind tunnel testing as well as free flight testing of these projectiles. Different 
aspects of computational techniques, such as grid generation, algorithms, 
turbulence modeling and flow field visualization, have been addressed by the 
group* 

lnviscid solutions were obtained for H-series projectiles with the use of the Euler 
Zeus graphical user interface (GUI) code [6,7J. Computations of the H3 projectile 
and ik variations (with and without flares and strakes) were performed with the 
Euler Zeus code at M = 8.2 and several angles of attack between 0” and 15”. 
Comparison was made of stabilization by &rakes and flare for a different H-series 
projectile [B]. The computations indicated that although the flare gave increased 
drag it was still substantially more effective in providing stability than &rakes 
alone. The present research focuses on the application of CFD techniques for 
accurate numerical prediction of supersonic flow over the elliptical H3P78 
projectile. Calculations for the H3P78 projectile were performed with the Zeus 
Euler code and two Navier-Stokes flow solvers: the zonal Navier-Stokes flow 
(solver) (ZNSFLOW) [9] and CFD++ [lO,ll], at several supersonic Mach numbers 
between 2.5 and 4.0 and several angles of attack from 0” to 12” for the jet-off 
conditions. In addition, numerical computations for the H3P78 projectile have 
been performed for the jet-on conditions with the CFD++ code to study the 
interaction of a helium jet with a free stream M = 4.0 flow. 
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A description or the computational techniques is presented, followed by a 
description of the applications of these techniques to the H3P78 projectile. 
Results for this configuration are shown at various supersonic speeds and angles 
of attack. Computed data have been compared with experimental data provided 
by the Defence Evaluation and Research Agency (DERA), United Kingdom (UK) 
[5] and obtained at the Defence Research Establishment, Valcartier (DREV), 
Canada [12]. ~ 

I 

2. Solution Technique 

2.1 Euler Zeub GUI Code 

Development of the Zeus GUI code [6,7] at the U.S. Army Research Laboratory 
(ARL) was und rtaken at the request of the Aviation and Missile Research 

I” Development and Engineering Center (AMRDEC) and was funded by ARL as 
part of a Technology Program Annex (TPA) agreement. A picture of the Zeus 
GUI code in use (is shown in Figure 1. As a starting point for this effort, the zonal 
Euler solver or Zeus code [13,14] was chosen by AMRDEC to be incorporated 
into a GUI envir nment. The original Zeus code was developed by the Navy and 

L is widely used ) ithin the international missile design community. Zeus is a 
zonal Euler CFD solver, which employs a second order Godunov scheme to 
integrate the Euler equations and march the solution longitudinally along the 
body. The solver algorithm in the ARL Zeus GUI is identical to the one 
implemented in/ the original Zeus code. One can obtain additional details about 
the integration scheme by referring to the work of Wardlaw [13,14]. 

In terms of the application of Zeus, there are some restrictions of its use. First, 
Zeus can only be applied to cases in which the entire flow field is supersonic. 
Zeus employs the Euler equations and therefore is most suitable for cases in 
which the boundary layer is assumed to be thin and its effects can be neglected. 
The computational mesh should be free of blunt discontinuities. Auxiliary 
programs are available to generate Zeus-compatible solution planes for blunt 
noses when the I computational mesh is not compatible with Zeus topology and 
when subsonic ~ flow may occur. Zeus was written to support a zonal grid 
topology. The zonal topology allows fins or wings to be modeled. However, the 
leading and tiai$ng edges should be fairly sharp. 
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have addressed this problem in ZNSFLOW by installing point-wise one- and 
two-equation turbulence models [21] that are not orientation specific. This 
greatly simplifies the setup of the turbulence model. Wall location information is 
supplied when the wall boundary conditions are set by the user. 

2.3 Governing Equations 

The complete set of 3-D, time-dependent, generalized geometry, Reynolds- 
averaged, thin layer Navier-Stokes equations is solved numerically to obtain a 
solution to this problem and can be written in general spatial coordinates 5, q, 
and 5 as follows [22]: 

in which 

5 = 5 (x, y, z, t) - longitudinal coordinate, 

q = -I-l (x, y/ z t) - circumferential coordinate, 

< = < (x, y, z, t) - nearly normal coordinate, and 

z=t-time. 

In Equation 1, 4 contains the_ dependent _variables (density, three velocity 
components, and energy), and F , G , and H are flux vectors. The thin layer 
approximation is used here, and the viscous terms involving velocity gradients 
in both the longitudinal and circumferential directions are neglected. The viscovs 
terms are retained in the normal direction, & and are collected into the vector, S . 
In the wake or the base region, similar viscous terms [l] are also added in the 
streamwise direction, 5. An implicit, approximately factored scheme is used to 
solve these equations. For the computation of turbulent flows, the turbulent 
contributions are supplied through an algebraic eddy viscosity turbulence model 
developed by Baldwin and Lomax [20] or a point-wise turbulence model [21]. 

2.4 Numerical Algorithm 

The implicit, approximately factored scheme for the thin layer Navier-Stokes 
equations with central differencing in the q and & directions and “upwinding” in 
5 is written in the following form [16]: 

[ I+i,h& (2’ )” +i,hSre” -i,hRe-’ 2, J-’ &“J-i,Di lr ] 

=ib At ( 6,” [ (f+)n-ki ]+S: [(k) “-&,]+g, (6)1-&m) (2) 
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in which h = At or (At)/2 and the free stream base solution is used. The free 
stream fluxes are subtracted from the governing equation to reduce the 
possibility of error from the free stream solution, which corrupts the converged 
solution. Here, 6 is typically a three-point second order accurate central 
difference operator, s is a midpoint operator used with the viscous terms, and 
the operators ficb and Stf are backward and fomard three-point_differen~e 
operators. The flux F has been eigensplit, and the matrices A, & C, and M 
result from local linearization of the fluxes about the previous time level. Here, J 
denotes the Jacobian of the coordinate transformation. Dissipation operators D, 
and Di are used in the central space-differencing directions. The smoothing terms 
used in the present study are of the form 

(3) 
Di I~ = (A t) J-’ [ E, UP p S + 2.5 &,Sp(~)g ] 10 J 7 

in which 

IS’PI 
P=, ( 1+ a2 ) P I’ 

and in which p(B) is the true spectral radius of B. The idea here is that the fourth 
difference will be tuned down near shocks (e.g., as J?I gets large, the weight on the 
fourth difference drops down while the second difference tunes up). 

2.5 CFD++ Flow Solver 

The basic numerical framework in which the proposed scheme is implemented is 
termed the unified grid, unified physics and unified computing framework. 
These have been implemented in a software suite called CFD++ [lO,ll] and the 
user is referred to these references for details of the basic numerical framework. 
Here, only a brief synopsis of this framework and methodology is given. 

The 3-D, time-dependent Reynolds-averaged Navier-Stokes (RANS) equations 
are solved by the finite volume method: 

$[w~v+Q[F-G]~~= Jmv 
V V 

in which W is the vector of conservative variables, F and G are the inviscid and 
viscous flux vectors, respectively, H is the vector of source terms, V is the cell 
volume, and A is the surface area of the cell face. 



The numerical framework of CFD++ is based on the following general elements: 

1. Unsteady compressible and incompressible Navier-Stokes equations 
with turbulence modeling [unified physics]; 

2. Unification of Cartesian, structured cuivihnear, and unstructured 
grids, including hybrids [unified grid]; 

3. LJn&ation of treatment of various cell shapes including hexahedral, 
tetrahedral, and ~triangular prism cells (3-d), quadrilateral and triangular cells (2- 
d), and linear elements (l-d) [unified grid]; 

4. Trea&ent of multi-block patched aligned (nodally connected), 
patched nonaligned and overset grids [unified grid]; 

5. Total1 variation diminishing discretization based on a new multi- 
dimensional interpolation framework; 

I 
6. Riem&nn solvers to provide proper signal propagation physics, 

including versions for preconditioned forms of the governing equations; 
I 

7. Consistent and accurate discretization of viscous terms via the same 
multi-dimensional polynomial framework; 

8. PointLwise turbulence models that do not require knowledge of 
distance to wall$; 

9. Versatile boundary condition implementation includes a rich variety 
of integrated boundary condition types for the various sets of equations; and 

10. ImplAmentation on massively parallel computers based on the 
distributed memory message-passing model via native message-passing libraries 
or message-passing interface, parallel virtual machines, etc. [unified computing]. 

The code has asbembled several ideas about convergence acceleration to yield a 
fast methodology for all flow regimes. The approach can be labeled as a 
“preconditioned implicit relaxation” scheme. It combines three basic ideas: 
implicit local time stepping relaxation, and preconditioning. Preconditioning the 
equations ideally equalizes the eigenvahres of the inviscid flux Jacobians and 
removes the st&ness arising from large discrepancies between the flow and 
sound velocitiej at low speeds, The use of an implicit scheme circumvents the 
stringent stability limits suffered by their explicit counterparts, and successive 
relaxation allotis cell revision as information becomes available and thus aids 
convergence. 

The code has recently added the ability to handle multi-block meshes with 
various types of inter-block connectivities. Multi-dimensional interpolation more 
accurately represents local behavior of flow-dependent variables. While the 
formal order of iaccuracy does not need to be any higher, this approach leads to 
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practically higher accuracy on relatively coarse meshes. The multi-dimensional 
interpolation framework helps us to easily handle inter-block connectivities also. 
Second order discretization was used for the flow variables and the turbulent 
viscosity equation. The turbulence closure has been based on topology- 
parameter-free formulations. These models are ideally suited to unstructured 
bookkeeping and massively parallel processing because of their independence 
from constraints related to the placement of boundaries and/or zonal interfaces. 
Recent contributions to these models include (a) unproved behavior of the 
dissipation rate transport equation by explicit sensitization to non-equilibrium 
flow regions, and (b) enhanced near-wall characteristics and elimination of ad hoc 
formulations through the introduction of time-scale realization. 

3. Chimera Composite Grid Scheme 

The chimera overset grid technique greatly adds to the number of applications to 
which the ZNSFLOW and CFD++ solvers can be applied. The chimera overset 
grid technique, which is ideally suited to complex configurations and multi-body 
problems [1,2,3,4,17,18,19], involves generating independent grids about each 
body or component and then oversetting them onto a base grid to form the 
complete model. An advantage of the overset grid technique is that it allows 
computational grids to be obtained for each body component separately and thus 
makes the grid generation process easier. Because each component grid is 
generated independently, portions of one grid may lie within a solid boundary 
contained within another grid. Such points lie outside the computational domain 
and are excluded from the solution process. Equation 2 has been modified for 
chimera overset grids by the introduction of the flag ib to achieve just that. This ib 
array accommodates the possibility of having arbitrary holes in the grid. The ib 
array is defined so that i b = 1 at normal grid points and i b = 0 at hole points. 
Thus, when ib = 1, Equation 2 becomes the standard scheme. The set of grid 
points that forms the border between the hole points and the normal field points 
is called inter-grid boundary points. We revise these points by interpolating the 
solution from the overset grid that created the hole. Values of the ib array and the 
interpolation coefficients needed for this revision are provided by a separate 
algorithm [17]. 

4. Model Geometry and Computational Grid 

4.1 Zeus Computational Mesh 

One of the more convenient features of the Zeus GUI is the automatic grid 
generation. The user merely specifies the missile surface geometry, and the flow 
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field mesh is built plane by plane as the solution is computed. The current set of 
GUI-directed geometry input is capable of describing axisyrnmetric firmed 
missiles. Since Q-series projectiles are not axisymmetric, the projectile surface 
was generated by an auxiliary program and written as a set of discrete points to a 
file. The projectile surface was read into Zeus GUI via the user-defined surface 
option. The Zeus GUI also provides controls for mesh clustering. The mesh was 
clustered in the direction normal to the body at the surface. Pitch-plane 
symmetry was used for most computations. When pitch-plane symmetry was 
employed, 72 points were used in the circumferential direction. The outer grid 
boundary of the automatically generated grid is shock fitted. Therefore, the 
distance from the projectile body surface to the outer grid body grows as the 
solution is marched from nose to tail. In most cases, 36 points were used in the 
normal direction for the first 15% of body length; then the solution’was stopped. 
The flow field solution for the remaining body length was usually computed 
with 72 points m the direction normal to the body, but for some high angle-of- 
attack cases, 120 points were used. To increase the number of points in the 
normal direction an auxiliary program was used to interpolate a solution plane 
with 36 normal points to one with 72 normal points. The auxiliary program is 
accessible through the GUI and uses the GUI parameters, such as mesh cluster 
controls, to easily refine the computational mesh. At this mesh resolution, Zeus 
usually required approximately 5,000 axial planes to obtain the solution for the 
entire body length. A solution could be obtained with approximately 20 minutes 
of computer time on a Silicon Graphics workstation. 

4.2 Navier-Stokes Computational Meshes 

For the jet-off cases that use the Navier-Stokes flow solvers, two multi-block 
grids were developed. These stictured multi-block grids have one-to-one 
overlaps at the ional boundaries. Both grids are two zone H-grids. The H3P78 
projectile is shown in Figure 2. The initial grid (GRID-l) used for these 
computations was a two-zone grid (see Figure 3) that consisted of 1.8 million 
grid points. Zoqk 1 grid along the projectile body, has 251 longitudinal points, 59 
normal points, and 91 circumferential points, with an H-type grid at the nose of 
the projectile. The base grid, Zone 2, is an H-grid consisting of 50 longitudinal 
points, 113 normal points, and 91 circumferential points. The minimum spacing 
at the wall is 6.QE-05 nun (lE-06 calibers). An expanded view of the base region 
grid is shown m Figure 4. 

Consisting of one million points, GRID-2 contains fewer total points but has a 
larger number of points (121 points, see Figure 5) in the circumferential direction 
in both zones. Zone 1 has 101 longitudinal points and 45 normal points, while 
Zone 2, in the &ke region, has 40 longitudinal points and 99 normal points. The 
minimum spa&g at the projectile wall is 2.OE-03 nun (3.OE-05 calibers) for both 
grids. ~ 
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5.2 Navier-Stokes Results (jet off) 

Three-dimensional numerical computations have been performed for the H3P78 
projectile with both ZNSFLOW and CFD++ codes at several supersonic Mach 
numbers between 2.5 and 4.0 and several angles of attack from 0” to 12” for the 
jet-off conditions. In addition, numerical computations for the H3P78 projectile 
have been performed for the jet-on conditions to study the interaction of a 
helium jet with a free stream M = 4.0 flow. All these simulations employ 
symmetry in the pitch plane, so only half of the physical domain is modeled. 
Turbulence closure was provided via either an algebraic model or a point-wise 
two-equation model. Computed results obtained for the jet-off conditions are 
presented next. 

Figures 16 and 17, respectively, show computed pressure contours at M = 2.5 and 
4.0 for different angles of attack. Here, blue represents low pressure and red 
represents high pressure regions. Figure 16 shows the computed pressure 
contours at Mach 2.5 and angles of attack 4, 8, and 12 degrees (from top to 
bottom). It shows the higher pressures on the wind side and lower pressures on 
the lee side. The lower pressures on the lee side can be seen more clearly, 
especially at 12 degrees angle of attack. Also seen in this figure are the shock 
waves emanating from the nose and the body-flare junction. Similar flow field 
features can be seen at Mach 4. As seen in Figure 17, the shock waves are 
stronger for M = 4 both at the nose and the flare junction. As the angle of attack 
increases from 4 to 12 degrees (from top to bottom), the computed pressure 
contours -show an increase in the low pressure region on the lee side. Figure 18 
shows the computed particle traces in the base region at M = 4.0 and 01 = 12 
degrees. These particle traces show the complex vertical flow pattern in the near 
wake of the projectile. 

Figures 19,20, and 21 show the comparison of the computed aerodynamic force 
and moment coefficients with the data at M = 2.5. We obtained these computed 
force and moment coefficients by integrating the computed surface pressures. 
Figure 19 shows the comparison of the computed normal force coefficient with 
the data. The computed results shown here were obtained with both ZNSFLOW 
and CFD++ flow solvers. ZNSFLOW results were obtained with two different 
computational grids (grid 1 consisting of 1.8 million and grid 2 consisting of 
1.0 million grid points) and show that the computed results are grid 
independent. The computed normal force obtained by both ZNSFLOW and 
CFD++ codes matches fairly well with the data except at 12 degrees angle of 
attack where a small discrepancy exists. The computed results with the 
ZNSFLOW code were obtained with an algebraic turbulence model, whereas the 
CFD+I- results were obtained with a point-wise two-equation turbulence model. 
Figure 20 shows the comparison of the computed pitching moment coefficient 
with the experimental data. Again, the nose ,of the projectile is used as the 
reference point for the moment coefficient. In general, the computed pitching 
moment coefficient obtained by both Navier-Stokes solvers is in good agreement 
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with the data, regardless of the turbulence modeling used in the computations. 
The data and the computed results show that the pitching moment coefficient 
decreases as the angle of attack increases. A comparison of the computed axial 
force coefficient with the data is shown in Figure 21. The data and the computed 
results show that the drag is almost constant as a function of angle of attack. 
Again, the computed axial force coefficients are in good agreement and are 
within 10% of the measured data. The two different grids used in the ZNSFLOW 
computations produce almost identical results at higher angles of attack and are 
within 5% of leach other at lower angles of attack. The computed results 
predicted by the CFD++ code seem to match the data slightly better except at 
0 degree angle of attack. 

Computations were performed for the H3P78 elliptical projectile at a higher 
Mach number, M = 4, and several angles of attack. Figures 22 through 25 show 
the comparison of the computed aerodynamic force and moment coefficients 
with the data at M = 4. Figure 22 shows the comparison of normal force 
coefficient at various angles of attack. The normal force increases with the 
increasing angles of attack, as seen in the computed and measured data. The 
computed data were obtained with Zeus Euler as well as the Navies-Stokes 
solvers and are shown in open symbols. The experimental data are shown in 
closed circles. All computed results are in excellent agreement with the data for 
all angles of attack. Computed results with the ZNSFLOW code again were 
obtained with an algebraic Baldwin-Lomax turbulence model, whereas the 
CFD++ results were obtained with a point-wise two-equation turbulence model. 
As seen in Figure 23, the computed pitching moment coefficients predicted by 
the Euler and1 Navier-Stokes techniques are in excellent agreement with 
experimental data. A comparison of the computed axial force coefficient with the 
data is shown~ in Figure 24. As expected, the largest discrepancy in the 
comparison is with the Euler code prediction, The Euler code underpredicts the 
axial force, as ken in Figure 24. The axial force coefficient predicted by the 
ZNSFLOW code matches well at 0 degree angle of attack and is within 10% of 
the measured data at other angles of attack. Computed results obtained with the 
CFD++ code are generally in very good agreement with the experimental data. 
The CFD++ code was also used to compute the flow fields at M = 4 for laminar 
flow conditionsJ 

Figure 25 shows! the comparison of laminar and turbulent runs with the data. The 
laminar results at all angles of attack are underpredicted, although the 
discrepancy seems to be less at higher angles of attack. The flow in the wake 
region behind the projectile (and thus the base drag) is predicted correctly in the 
turbulent runs, as evidenced by the very good comparison with the data. 
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6. Conclusion 

CFD approaches were used to compute the supersonic and hypersonic flow 
fields and aerodynamic forces and moments on elliptical projectiles. Steady state 
numerical results have been obtained at several supersonic Mach numbers 
between 2.5 and 4.0 and several angles of attack from 0” to 12” for the jet-off 
conditions with the use of Euler and Navier-Stokes flow solvers. In addition, 
numerical computations have been performed for the jet-on conditions to study 
the interaction of a helium jet with a free stream M = 4.0 flow. In general, very 
good agreement of the computed aerodynamic coefficients with the experimental 
data was achieved at all speeds and angles of attack investigated for jet-off 
conditions. Both Navier-Stokes codes predicted the normal force and pitching 
moment coefficients very well. However, the CFD++ code seems to predict the 
axial force more accurately, partly because of the advanced turbulence modeling 
used in the computations. CFD results for the jet-on case show that the 
qualitative features and strong flow interaction between the jet and the free 
stream flow are similar to those observed in the experiment. Computed surface 
pressures along the jet centerline compare better than those along the line of 
symmetry. The results show the predictive capabilities of CFD techniques for 
supersonic flow over elliptical projectiles with and without jet interaction. 
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